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Abstract
It is shown that metals would be liquid at high pressure at absolute zero
temperature due to the vanishing of the shear modulus. The lowest shear
modulus collapse pressures PG occur for low-Z metals. The shear modulus
collapse of the lattice for Li, Be, and B (Z < 6) may occur at pressure
P < 3 Mbar, i.e. at pressures which can be distinguished now by the diamond-
anvil technique. Our calculations show that hydrogen transforms to liquid metal
at the molecular–monatomic transition.

Whether a material would be solid or liquid at ultrahigh pressure is one of the main problems in
high-pressure physics, geophysics, planetary physics, and astrophysics. Some evidence exists
that these materials would be liquid at extreme pressure. (i) Calculation of the ground-state
energy for a system of interacting electrons and positive ions shows that at extreme pressure
the liquid state is more stable than the solid, at least for alkali metals [1]. (ii) A solid would be
destroyed at extreme pressure by zero-point quantum vibration at absolute zero temperature
(so called ‘cold melting’) when the energy of zero-point quantum vibration of atoms becomes
greater than the Coulomb energy [2]. (iii) Recently, it was shown that the melting temperature
dependence on pressure P has the form Tm = F(P)D(P), where F(P) is the rising and D(P)

is the damping function, which slopes downward asymptotically under pressure [3]. (At low
temperatures, the quantum effects should be taken into account. The zero-point vibration
destroys the lattice when Tm approaches zero temperature.) This form predicts that solids
must be liquid at high pressure.

On the other hand, for inverse power potentials, φ(r) ∼ r−n , melting temperature at high
density has the form Tm ∼ r−n/3, with n lying in the interval from 6 to 12 for the majority
of materials [4]. From one-component plasma theory [5], it follows that Tm ∼ Z 5/3r−1. All
of these forms predict that the melting temperature rises continuously under compression. In
other words, material will remain a solid at all pressures. (It is believed that only hydrogen and
helium will be liquid due to zero-point quantum vibration. This because the densities required
for heavier elements are such that the sizes of the nuclei become important [2].)

In the present letter we consider the behaviour of the shear modulus of materials under
pressure. Note that the shear modulus G > 0 for the solid state whereas G = 0 for the liquid
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state. Voigt [6] has shown that the shear and bulk moduli of crystals can be expressed in
terms of the elastic constants ci j . It should be emphasized that the Voigt relationships hold at
any pressure as long as the matter is solid. The Voigt relationships are widely employed in
geophysical research [7]. For cubic crystals (the more stable structures at high pressure), the
Voigt shear modulus has the form GV = (c11 − c12 + 3c44)/5 which can be written as

GV = 3
5 (B − 2P − δ), (1)

where B = (c11 +2c12)/3 is the bulk modulus and δ = c12 −c44 −2P is the deviation from the
Cauchy relation. If the Cauchy relation in a material holds—that is, if the pair potential exists
(the interatomic force is central)—then deviation δ = 0. All materials become metals at high
pressure due to the expanding and overlapping of energy bands. Effects due to many-body
forces in metals cause deviation from δ = 0 (for metals δ > 0). It is convenient to rewrite
equation (1) in the form

GV = 3
5 (β B − 2P) (2)

where the dimensionless parameter β = 1 − δ/B , β � 1. Experimental data [7–9] at
P = 0 show that β = 1 − (c12 − c44)/B = 5G/(3B) = 0.7 ± 0.2 for cubic (fcc, bcc)
metals. Equation (2) predicts that the lattice should be destroyed at extreme pressure due
to the vanishing of the shear modulus. Indeed, in the high-density limit B/P = 5/3 and
GV/P = (5β − 6)/5 < 0. Therefore the shear modulus collapse pressure, PG exists, when
the Voigt shear modulus GV vanishes. At pressures P > PG all materials would be liquid
even at absolute zero temperature [10]1.

We calculate the shear modulus collapse pressure PG for different elements at 0 K using
equation (2) and the quantum statistical model (QSM) for the equation of state. The QSM model
includes the kinetic pressure of a uniform degenerate Fermi gas, the Madelung (Coulomb),
the exchange and the quantum corrections [11]. The interpolation equation for metals has the
form

P = 294.2

[
1

5
(3π2)3/2ρ5/3 − 13

16

(π

3

)−1/3
ρ4/3

]
Mbar, (3)

B = −v dP/dv = 32.7

[
(3π2)3/2ρ5/3 − 13

4
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]
(3 + ars + br2

s ) Mbar, (4)

where

ρ = Z

v
exp[−a(Z)rs − b(Z)r2

s ]

a(Z) = 0.1935Z 0.495−0.038 log Z

b(Z) = 0.068 + 0.078 log Z − 0.086(log Z)2

rs is the ratio of the radius of the equivalent sphere to the volume per atom in units of the Bohr
radius, and Z is the atomic number.

The results of calculations of the shear modulus collapse pressure PG as a function of the
atomic number Z for the mean value β = 0.7 are shown in figure 1. It should be noted that
Z could be considered not only as an atomic number, but also more generally as a number
of electrons (protons) per atom. In this case the PG versus Z dependence in figure 1 can be
applied not only to elements, but also to the isoelectronic compounds (having the same number
of electrons per atom), since the equations of state of isoelectronic materials converge at high
pressure [12].

1 Wigner crystal is the opposite case: electrons arrange in a crystal lattice when the volume of the electron liquid
expands.
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Figure 1. The shear modulus collapse pressure PG , which corresponds to the vanishing of the
shear modulus, versus atomic number Z at 0 K. Calculations were based on the Voigt equation for
the shear modulus, GV = 3(βB −2P)/5, where B is the bulk modulus and β = 0.7. The quantum
statistical model for the equation of state of matter was used.

It should be emphasized that the shear modulus collapse pressures in figure 1 correspond to
the metallic state of materials. For nonmetals, the dependence PG versus Z at pressure below
the transition to the metal state corresponds to the metastable metallic phase. Therefore, if
the shear modulus collapse pressure, PG , is less than the nonmetal–metal transition pressure,
PG < Pn−m, then the nonmetal–metal transition corresponds simultaneously to a transition
from the solid to the liquid state.

The lowest shear modulus collapse pressures PG are for low-Z metals. Theory predicts
that hydrogen (Z = 1) should dissociate at high pressure from its molecular state to form
monatomic metal. The nonmetal–metal transition is expected to occur at pressures in the
neighbourhood of Pn−m = 4 Mbar [13]. Many theorists have attempted to predict the
structure of metallic hydrogen. Many studies supported low-coordination-number anisotropic
structures, others concluded that high-coordination-number isotropic structures are favoured,
and yet others considered the possibility of a quantum liquid state [14]. Our calculations
show that the lattice of metallic hydrogen is destroyed at PG = 0.23 Mbar, if β = 0.7 (the
collapse pressure PG varies from 2.9 to 0.05 Mbar when β varies from 0.9 to 0.5, respectively),
i.e. PG < Pn−m in all cases. Hence hydrogen after the nonmetal–metal transition would
be liquid. This conclusion is in agreement with previous calculations by McDonald and
Burges [15]. They argued that, because of the differing roles of electronic screening in solid
and fluid states, metallic hydrogen will remain a liquid at all pressures. Recently, we calculated
the melting curve of metallic hydrogen and found that metallic hydrogen would be liquid at
all pressures at absolute zero temperature as a result of the zero-point quantum vibration of
atoms [16]. Jaffe and Ashcroft [17] have concluded that metallic hydrogen can become a new
state of matter: a superconducting liquid.

Unlike hydrogen (and other diatomic molecular insulators), monatomic insulators, such
as the rare-gas solids (He, Ne, Ar, Kr, and Xe), are metallized under pressure as a result
of the band overlap. Band theory calculations for helium indicate T = 0 metallization at
Pn−m = 112 Mbar [18]. Our calculations show that the lattice of metallic helium would be
destroyed at PG = 0.46 Mbar, i.e. PG < Pn−m. Correspondingly, at the nonmetal–metal
transition, molecular helium, as in the case of hydrogen, would transform directly to the
metallic liquid state. LiH and CH4 are isoelectronic to helium. For them, as for helium,
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PG = 0.46 Mbar and PG < Pn−m. All of them transform to liquid at the nonmetal–metal
transition. For the other rare-gas solids (except neon), PG > Pn−m. At P = Pn−m these
materials transform to solid metal; then at P = PG they transform to liquid metal.

The lattice of lithium (Z = 3) would be destroyed at PG = 0.7 Mbar (figure 1). In this
connection, it is interesting to note that the superconducting critical temperature of lithium [19]
at 0.7 Mbar drops down from 16 to 11 K. It seems plausible that lithium at pressure 0.7 Mbar
would transform to the liquid superconducting state (like hydrogen).

Beryllium (Z = 4) and boron (Z = 5) are more suitable for high-pressure experiments, in
comparison with lithium, because of its active diffusion into diamond anvils. Our calculations
show that beryllium and boron would be liquid metals at pressures above 1.1 and 1.3 Mbar,
respectively, if β = 0.7 (the pressures are doubled if β = 0.75). Boron transforms from
a nonmetal to a superconductor at 1.6 Mbar [20]. It may well be that the nonmetal–metal
transition in boron coincides with the solid–liquid transition.

The present results should be considered as qualitative. All collapse pressures PG in this
letter are based on the QSM equation of state, which is not well defined at low compression.
The shear modulus collapse pressure PG is very sensitive to the value of the parameter β.
Clearly, small differences in β yield large variations in the estimates of the collapse pressure.
In general, the parameter β is specific to each material. Furthermore, the value of β depends
on the pressure. Experiments show that the parameter β decreases (the deviation δ increases)
under pressure, i.e. the noncentral nature of the bonding becomes enhanced at high pressure.
In fact, the PG versus Z dependence should not be a smooth line; it is more likely to be a line
which oscillates, because to every Z there should correspond a specific β. Nevertheless, the
main result is unchanged: the Voigt equation predicts that the lattice should be destroyed at
extreme pressure due to the vanishing of the shear modulus.

In conclusion, it is shown that all materials would be liquid at high pressure at absolute
zero temperature due to the vanishing of the shear modulus. The shear modulus collapse
pressure depends on the atomic number Z and on the parameter β. The lowest shear modulus
collapse pressures PG are for low-Z metals. Our calculations show that hydrogen (Z = 1),
helium, LiH and CH4 (Z = 2) transforms to liquid at the nonmetal–metal transition. The
possibility of the shear modulus collapse of lattices (‘shear modulus melting’) at high pressure
may be important in the evolution and composition of giant planets of solar systems, as well
as of white and brown dwarfs.

The author thanks Professor N W Ashcroft for helpful discussions of the hydrogen phase
diagram. This work was supported in part by the Russian Foundation for Basic Research,
project No 02-02-17112.
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